Eta Invariants and Regularized Determinants for Odd Dimensional Hyperbolic Manifolds with Cusps

نویسنده

  • JINSUNG PARK
چکیده

We study eta invariants of Dirac operators and regularized determinants of Dirac Laplacians over hyperbolic manifolds with cusps. We follow Werner Müller (see [18], [19]) and use relative traces to define the eta function and the zeta function. We show regularities of eta and zeta functions at the origin so that we can define the eta invariant and the regularized determinant. By the Selberg trace formula, we show an equality between the eta invariant and the Selberg zeta function of odd type. The complete analysis of the unipotent orbital integral allows us to show the vanishing of the unipotent contribution in this relation. We also show that the eta invariant and the Selberg zeta function of odd type satisfy certain functional equation. These results generalize the earlier work of John Millson (see [12]) to hyperbolic manifolds with cusps. We also get the corresponding relation and the functional equation for the regularized determinant and the Selberg zeta function of even type where the unipotent factor plays a non-trivial role.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regularity of the Eta Function on Manifolds with Cusps

On a spin manifold with conformal cusps, we prove under an invertibility condition at infinity that the eta function of the twisted Dirac operator has at most simple poles and is regular at the origin. For hyperbolic manifolds of finite volume, the eta function of the Dirac operator twisted by any homogeneous vector bundle is shown to be entire.

متن کامل

The Eta Invariant and Equivariant Bordism of Flat Manifolds with Cyclic Holonomy Group of Odd Prime Order

We study the eta invariants of compact flat spin manifolds of dimension n with holonomy group Zp, where p is an odd prime. We find explicit expressions for the twisted and relative eta invariants and show that the reduced eta invariant is always an integer, except in a single case, when p = n = 3. We use the expressions obtained to show that any such manifold is trivial in the appropriate reduc...

متن کامل

Volumes of hyperbolic manifolds and mixed Tate motives

1. Volumes of (2n − 1)-dimensional hyperbolic manifolds and the Borel regulator on K2n−1(Q). Let M be an n-dimensional hyperbolic manifold with finite volume vol(M). If n = 2m is an even number, then by the Gauss-Bonnet theorem ([Ch]) vol(M) = −c2m · χ(M) where c2m = 1/2×(volume of sphere S of radius 1) and χ(M) is the Euler characteristic of M. This is straightforward for compact manifolds and...

متن کامل

Computing Arithmetic Invariants of 3-Manifolds

This paper describes “Snap”, a computer program for computing arithmetic invariants of hyperbolic 3-manifolds. Snap is based on Jeff Weeks’s program “SnapPea” [41] and the number theory package “Pari” [5]. SnapPea computes the hyperbolic structure on a finite volume hyperbolic 3-manifold numerically (from its topology) and uses it to compute much geometric information about the manifold. Snap’s...

متن کامل

Four Dimensional Quantum Topology Changes of Spacetimes

We investigate topology changing processes in the WKB approximation of four dimensional quantum cosmology with a negative cosmological constant. As Riemannian manifolds which describe quantum tunnelings of spacetime we consider constant negative curvature solutions of the Einstein equation i.e. hyperbolic geometries. Using four dimensional polytopes, we can explicitly construct hyperbolic manif...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003